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Expectation energies for the Li +, Li and Li- ground states and for the ls22p Li excited state are 
individually minimized with respect to variation of parameters in Gaussian lobe expansions of the is, 
2s and 2p AO's. A new technique is used to control ls - 2s orthonormality. The resulting approximate 
many-electron atomic eigen-functions are utilized for determining interatomic matrix elements in 
atoms-in-molecules (AIM) calculations on the two lowest energy a2~+ states of Li2 and on the lowest 
energy 22;~ and 22;.+ states of Li~. For R greater than 4 a.u., convergence to exact theoretical AIM 
limits, within about 0.001 h.u, is obtained by using three-term expansions. Three-structure Li 2 and 
two-structure Li~ AIM energies are above experimental by 0.005 and 0.007 h.u., respectively. It is con- 
jectured that an AIM model extended to permit scaling of valence electrons independently of inner- 
shell electrons would reduce significantly these energy differences. 

Die Energieerwartungswerte fiir die Grundzust~inde yon Li +, Li und Li- sowie f'tir den angeregten 
Zustand ls22p von Li werden einzeln beztiglich der Variationsparameter ether Entwicklung der 
ls-, 2s- und 2p-Atomorbitale nach GauBfunktionen minimisiert. Zur Kontrolle der Orthonormalit~it 
der ls- und der 2s-Funktion wird eine neue Technik angewandt. Die resultierenden angeniiherten 
Atomeigenfunktionen werden bet Atom-in-Molekiil(AIM)-Rechnungen f'tir die zwei niedrigsten 

2 + und 22;.+ von Li + verwendet. 12;o+-Zust~inde yon Li2 und die niedrigsten Zust~inde der Symmetrie 2;g 
Ftir einen Atomabstand R gr6Ber als 4 A.E. wird mit einer Entwicklung mit drei Termen eine An- 
niiherung bis zu 0,001 A.E. an den exakten theoretischen AIM-Grenzwert erreicht. Die AIM-Energie- 
werte, die mit drei Resonanzstrukturen yon Li2 bzw. zwei Resonanzstrukturen yon Li~ erhalten werden, 
liegen 0,005 A.E. bzw. 0,007 A.E. tiber den experimentellen Werten. Es wird angenommen, dab eine 
Erweiterung des AIM-Modells, bet der eine Skalierung der Valenzelektronenfunktionen unabh~ingig 
von den inneren Elektronen m6glich ist, diese Energiedifferenz stark herabsetzen wtirde. 

Les 6nergies de l'~tat fondamental de Li +, Li et Li-, et de l'~tat excit6 ls22p de Li sont individuelle- 
ment minimis6es par rapport ~t la variation des param~tres dans le d6veloppement gaussien des orbitales 
atomiques ls, 2s et 2p. Une technique nouvelle est utilis6e pour contr61er l!orthonormalit6 l s - 2 s .  
Les fonctions d'onde poly61ectroniques approch6es r6sultantes sont utilis6es pour des calculs du type 
atomes dans les mol6cules (ADM) pour les deux &ats a2;+ de plus basse 6nergie de Li z et sur les 6tats 
22;+ et 2s de plus basse 6nergie de Li +. Pour R sup~rieur h 4 u.a., la convergence vers les limites 
th6oriques exactes ADM est obtenue avec un d6veloppement h trois termes, ~ 0,001 u.a. pr6s. Les 
6nergies ADM ~ trois structures pour Li2 et ~t deux structures pour Li~- sont respectivement h 0,005 et 
0,007 a.u. au dessus des 6nergies exp6rimentales. On 6met l'hypoth6se qu'un mod61e ADM 6tendu pour 
permettre le calibrage des 61ectrons de valence ind6pendamment des 61ectrons des couches internes 
r6duirait d'une mani~re significative ces diff6rences d'6nergie. 

1. Introduction 

A t o m s - i n - m o l e c u l e s  ( A I M )  t h e o r y  w as  f o r m a l l y  d e v e l o p e d  b y  M o f f i t t  for  t he  

p u r p o s e  of  e l i m i n a t i n g  a t o m i c  c o r r e l a t i o n  e n e r g y  e r r o r s  f r o m  m o l e c u l a r  c a l c u -  
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lations [1]. Practical modifications have been devised by Arai [2], by Hurley [3], 
and by Balint-Kurti and Karplus [-4]. The basic approach has been reviewed and 
discussed by Parr [5]. 

The wave function basis in AIM theory consists, in the first place, of linear 
combinations of antisymmetrized products of atomic substate eigenfunctions. As 
the number of basis functions 7/, is increased, one would expect predicted molecular 
eigenvalues to converge toward experiment in accordance with the variational 
principle. In AIM methods, exact equations are used for determining, by reference 
to experimental atomic energies, all intraatomic contributions to the energy 
matrix elements. All other parts of these elements, as well as all overlap matrix 
elements, are interatomic in nature, and these parts are computed using previously 
determined approximate atomic eigenfunctions. Because of this dichotomy, 
common to all AIM methods, the variational principle is not necessarily followed; 
predicted molecular energies may lie above or below experiment 1. However, as 
the approximate atomic functions are successively refined, a predicted molecular 
energy should converge toward an exact theoretical AIM limit which will satisfy the 
variational principle; as the number of basis functions 7/, is increased, results 
should converge to experiment. 

Sometime ago, a new AIM approach called scaled atoms-in-molecules (SAIM) 
theory for predicting potential energy curves of diatomic molecules was developed 
[6]. In this method, each basis function ~, is modified by introducing factors 
s, A and s, B into its component A- and B-atom eigenfunctions. Exact equations were 
developed for determining, again by reference to experimental atomic energies, 
all intraatomic contributions to the energy matrix elements. Total molecular 
expectation energies could be minimized with respect to the several scale factors. 
Thus, a principal objection to pure AIM theory is overcome: namely, that the 
scale factors (i.e., effective nuclear charges) appropriate to free atoms and ions 
simply are not favorable for fast convergence of the AIM series [2, 3, 5]. 

We have reported initial calculations on various electronic states of H 2 ,  He~- +, 
He +, H2 and He 2 [6-8]. For the ground X 1Z+ and excited E tz+ states of H2, 
five basis functions were considered, corresponding to the following interacting 
states: (1) l s H + l s H ;  (2) 1 S H - + H + ;  (3) l s H + 2 s H ;  (4) l s H + 2 p 0 H ;  and 
(5) 2p+ H + 2p_ H [8]. Use of ls 2 approximation for tS H- ,  where ls is the STO 
(Slater-type orbital) appropriate to H- ,  leads to SAIM H a energies lower than 
experimental. Use of the Hylleraas-Eckart is ls' function [9] or the Silverman- 
Platas-Matsen is i s '+  22p 2 [10] for H -  leads to SAIM H 2 energies approaching 
the exact limit within 0.001 h.u. (1 Hartree unit = 27.21 eV). 

It seems clear from all work done so far that the optimized STO minimal basis 
set is not sufficiently accurate for SAIM calculations. If this theory is to be useful 
for prediction and explanation of ground and excited electronic state potential 
energy curves (and surfaces), it is essential that approximate ground and excited 
state atomic eigenfunctions be developed that are both adequate to achieve the 
exact theoretical SAIM limit and practical from the computational viewpoint. 

1 Our experience has shown that use of defective approximate atomic eigenfunctions usually 
depress calculated AIM molecular energies. For infinite internuclear separations, AIM predicted 
energies will, of course, be identical to experiment. 
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In this paper, we report AIM calculations on electronic states of Li~- and Li 2 
in which approximate Li +, Li and Li-  substate wave functions (used to determine 
molecular interaction and overlap matrix elements) are constructed from orbitals 
varied so as to minimize the total energy of each individual many-electron atomic 
substate function. The orbitals are expressed as linear combinations of simple 
Gaussian functions. A technique slightly different from that used before is out- 
lined for controlling l s - 2 s  orthonormality; the new method leads to shorter 
series for the orthogonalized 2s orbital. Finally, we find that three-term energy- 
optimized Gaussian orbitals are sufficient to obtain convergence to exact theoret- 
ical AIM limits for Li~- and Li 2. 

2. Least Energy Minimal Atomic Orbitals: 
Gaussian Lobe Functions (LEMAO-NGL's) 

A) General 

In this paper, we report pure atoms-in-molecules (AIM) calculations in which 
the approximate many-electron atomic substate wave functions (used to determine 
the interaction and overlap elements) are constructed from orbitals varied so as to 
minimize the total energy of the given many-electron atomic substate functions. 
These orbitals are expressed as linear combinations of simple Gaussian functions. 
For ls and 2s orbitals, the Gaussians have their origin at the given nucleus. For 
2p orbitals, we have elected to utilize "lobe" functions [ l l ]Z ;  a 2pz orbital, for 
example, is represented as the difference between two identical linear combinations 
of Gaussian functions, one with origin located at z = P and the other with origin 
located at z = - P  3. Thus, 

N 

ls = ~ bli exp(-aliro2), 
i 

M 

2s = ~ bgi exp(-azir~) , (1) 
i 

L 

2pz = ~ bai]-exp(- a3ir~) - e x p ( -  a3ir~)], 
i 

in which to, rl, and r2 are radial coordinates from the nucleus, from z = P, and 
from z = - P ,  respectively. 

For  a given electron configuration lsq2sr2p s, where n I = q, n 2 = r, and n 3 = s 
are the orbital occupation numbers, a manifold of atomic substates are obtained. 
For  any one of these substates, a proper wave function, in the restricted orbital 
approximation, may be expressed as a linear combination of Slater determinants. 
If the atomic orbitals are kept orthonormal, the total electronic energy may be 
expressed in the form 

E = Z niHi + 1 Z  Z [ni(nj - 6ij)Jij - A i j K J .  (2) 
i i j 

2 I t  has  been shown  tha t  the " lobe" Gauss i an  funct ion bas is  is essent ia l ly  equiva len t  to  the 
Car tes ian  G a u s s i a n  bas is  [12, t3] .  

3 p is equiva len t  to R 0 in Ref. [12]. 

6* 
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The indices 1, 2, and 3 refer to ls, 2s, and 2p, respectively; H i is the diagonal element 
of the one-electron core hamiltonian; Jij and K~j are the usual coulomb and ex- 
change integrals, except that 

J33 = (J2pz, 2pz -t- 2J2pz, 2vx)/3, 
(3) 

K 3 3  = K2pz, 2p x �9 

The coefficients Aij  = A~ are characteristic of each atomic substate: A~j = �89 
if i <  3 and j < 3; numerical values of A23 and A33 are listed in Ref. [14], but not 
needed in this work. 

Eqs. (1) are used to express the integrals appearing in Eq. (2) in terms of inte- 
grals over simple Gaussian functions, all of which are easily evaluated [15]. The 
total electronic energy E is thus obtained as a function of the parameters %,  b,~, 
and P of Eq. (1). The so-called least energy minimal atomic orbitals [16] (which 
we shall refer to as LEMAO-NGL orbitals, N being the number of terms in the 
expansion, GL standing for Gaussian lobe) will be determined if the parameters 
are chosen so as to minimize the total energy E of a given atomic substate. 

This has been accomplished, for example, for a selection of atomic ground 
states using Gaussian lobe functions by Grimmelmann and Chesick [-17] and 
using Cartesian Gaussians by Pople and coworkers [16]. 

In AIM theory, we have need for such LEMAO's appropriate not only to 
atomic ground states, but also to excited states, to positive ion states, and to 
negative ion states. We do not expect to require that these approximate eigen- 
functions yield extremely accurate intra-atomic energies; they are not used for 
that purpose in AIM calculations. It is the principal purpose of this research to 
determine the expansion lengths in Eq.(1) necessary to provide acceptably 
accurate interatomic contributions to the AIM matrix elements. 

Let us rewrite the Eqs. (1) generally as follows: 

N 

~p, = ~ b.,q~ i . (4) 
i 

For the special case ~Pa = 2pz, ~o~ represents a difference between two Gaussians 
located at z = _ P. Since Eq. (2) requires that the ~p, be orthonormal, the b,~ and 
% are not all independent. We may take the first coefficient in each orbital to be 
determined by normalization: 

~p. = b.a ~ Cni(,Oi , 
i 

% = b , J b , x ,  
(5) 

bnl = [ ~  ~ c,,cnjSi,] 1/2 , 

S~j = ~ qhq~dv .  

We now take the % (i > 1) to be independent, c,1 being set equal to one. 
Now, if one is minimizing E with respect to the exponents ax~ (i = 1, 2 . . . .  ) or 

the coefficients c1~ (i = 2, 3 . . . .  ) (i.e., with respect to variations in the ls AO), and 
if n 2 r 0 (i.e., if the 2s AO is occupied), then the parameters c1~ (i = 2, 3 . . . .  ) are not 
all independent; orthogonality between ls and 2s must be preserved. We have 
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elected to choose c12 so as to constrain this orthogonality: 

Thus, the true independent variables are cli, i > 2; al~, i > 1. In like manner, 

(6) 

(7) 

if one is minimizing with respect to variations in the 2s AO and nl r 0 (which will 
always be the case in this work); the true independent variables are c2i, i >  2, 
and a2i,  i > 1. 

This approach for handling Is - 2s orthogonality differs from that most often 
used. Usually, a 2s Gaussian expansion is Schmidt orthonormalized with respect 
to a predetermined ls Gaussian expansion to yield the orthogonalized 2s AO, now 
expressed in terms of two Gaussian expansions. Our approach generally leads to 
a shorter series for the orthogonalized 2s AO. 

B) L E M A O - N G L ' s  for Li + and Li 

In Table 1, we tist parameters for Gaussian expansions of the ls AO chosen 
so as to minimize the total electronic energy of ls 2 aS Li+; the energies are listed 
in Table 2. For comparison, we list also in Table 2 Li + energies calculated with an 

Table 1. Orbital exponents and expansion coefficients for lsZaSLi+ 

N all bll N a u bxi 

2 1.388532 0.7513883 5 0.6818738 
10.11372 1.130360 2.318487 

8.464990 
3 1.015169 0.4701795 37.17722 

4.993060 0.9747399 248.8885 
33.64526 0.7669813 

6 0.5323748 
0.8190934 0.3184732 1.586883 
3.254383 0.8049811 5.161091 

14.83208 0.7783552 18.93839 
98.15334 0.4812371 85.20426 

547.6970 

0.2156861 
0.6496735 
0.7436694 
0.5505841 
0.3114376 

0.1161647 
0.4959026 
0.7114812 
0.6067729 
0.3834520 
0.2069751 

Table 2. Energies (h.u.) for l s  z 1S Li + 

N l s -STO-NG l s - L E M A O - N G  

2 
3 
4 
5 
6 
STO 
Hartree-Fock 
Experimental 

-7 .2227  
-7 .2364  
- 7.2799 

-6 .9804  
-7 .1673 -7 .1797 
-7 .2092 -7 .2224  
-7 .2191 -7 .2326 

-7 .2353 
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Table 3. Orbital exponents and expansion coefficients for 2s orbital in ls22s 2S Li 

N(ls) M(2s) a21 b2i N(ls) M(2s) a21 b2i 

2 3 

2 4 

2 5 

3 3 

0.015819661 0.005736902 3 4 0.02776284 0.02312028 
0.04855379 0.06446754 0.06563349 0.05461865 
1.240164 -0.1628947 0.9753701 -0.1378904 

7.421443 -0.1628015 
0.01700869 0.007848712 
0.05755439 0.07048959 4 3 0.008535179 0.001434313 
1.031532 -0.1346667 0.04155497 0.06373754 
8.040977 -0.1420034 1.322863 -0.1819831 

0.02705561 0.02075375 4 4 0.01358333 0.004907548 
0.06614091 0.05877351 0.05168967 0.06906989 
1.027527 -0.1363496 1.104849 -0.1521092 
8.052362 -0.1423947 8.545282 -0.1708829 

25.00000 -0.0008272647 

0.02232988 0.01140161 
0.04800623 0.05601393 
1.267782 -0.1739216 

Table 4. Energies (h.u.) for 1s22s 2S Li 

N(ls) M(2s) E S( l s )  M(2s) E N(ls) M(2s) E 

2 3 -7.1693 
2 4 - 7.1782 
2 5 -7.1783 
STO -7.4179 
Hartree-Fock - 7.4327 
Experimental - 7.4779 

3 3 - 7.3641 4 3 - 7.4046 
3 4 -7.3742 4 4 - 7.4159 

appropriately scaled (Zeff = 2.6875) l s -STO-NG.  Our work here overlaps to some 
extent that presented by Chesick and coworkers [18]. Gaussian expansions of the 
STO's ls  and 2s used in this research were obtained from Huzinaga [19]; Gaussian 
lobe expansions of the STO 2p were obtained from Sambe [20]. 

In Tables 3 and 4, we list results for Gaussian expansions of the 2s AO in 
1S 2 2S 2S Li. We first appropriated a l s - L E M A O - N G  determined previously for 
ls  2 1S Li + ; independent parameters for the 2 s - L E M A O - M G  (a2i, i = 1, 2, 3 . . . . .  M, 
and e21, i = 3, 4 . . . . .  M) were determined by minimizing the total electronic energy 
of lsZ2s 2S Li. Then, the independent parameters for the l s - L E M A O - N G  (ali, 
i = 1, 2, 3 . . . . .  N and cli, i = 3, 4 . . . . .  N) were revaried to seek a still lower energy 
for Li. Never were we able to gain as much as 0.001 h.u. by this revariation of the 
inner-shell. Consequently, the l s - L E M A O - N G  parameters listed in Table 1 are 
used not only in Li + but also in ls22s 2S Li. 

In Tables 5 and 6, we list results for excited 1s22p 2p Li. Again, it was found 
that revariation of the inner 1s-shell made little difference in the final total energy. 
Furthermore, we found that an optimized 2p-LEMAO-NGL function with given 
N can be used arbitrarily in conjunction with l s - L E M A O - M G  functions with 
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Table 5. Orbital exponents and expansion coefficients for 2p orbital in 1s 2 2p 2p Li a 

N a31 b31 

0.0332337 0.2015516 
0.1535016 0.1251251 
0.03081741 0.1756399 
0.1167678 0.1365198 
0.688099 0.03659062 
0.02265422 0.1090897 
0.06546205 0.1517314 
0.2240412 0.07309883 
1.702588 0.02239308 

" P = 0.6 for N = 2,3,4. 

Table 6. Energies (h.u.) for 1s 2 2p 2p Li 

N(ls)  M(2p) STO-GL LEMAO-GL 

2 2 
2 3 
2 4 
3 2 
3 3 
3 4 
STO -7 .3504 
Experimental -7 .4100 

- 7.2942 
--7.2946 

-7.1051 
-7.1073 
-7.1078 
-7 .3046 
-7.3071 

Table 7. Orbital exponents, expansion coefficients, and energies (h.u.) for ls  2 2s 21S Li -  

N(ls)  M(2s) a21 b21 - E 

2 3 

3 3 

Hartree-Fock 
Experimental 

0.008381412 0.01056586 
0.04016744 0.03681205 
1.257558 --0.1110685 
0.008047178 0.01013226 
0.03700817 0.03462523 
1.290961 -0.1187769 

E = - 7.4282 
E = -7 .5054 

7.1664 

7.3602 

various different M. That is, suppose we are initially given two different 
2p-LEMAO-2GL functions: the first yields an opt imum energy E = -7 .1051  h.u. 
for ls22p 2PLi using l s -LEMAO-2G;  the second yields an optimum energy 
E = - 7.3046 h.u. for ls  22p 2p Li using l s -LEMAO-3G.  It turns out that both of 
these 2p-LEMAO-2GL functions will give the same energy E = -7 .1051  h.u. if 
they are used with l s -LEMAO-2G or E = - 7 . 3 0 4 6  h.u. if they are used with 
l s -LEMAO-3G.  Thus in Tables 5 and 6, only one 2p-LEMAO-NGL for each N 
is needed. Such transferability of 2s-LEMAO's with different l s -LEMAO's was 
not possible because of the orthogonality requirement. 

In Table 7, results are given for the ground electronic state ls22s 2 1S Li- .  
Again, it was found that revariation of the inner ls-shell made no significant 



88 F.O. Ellison and L. L. Larcom: 

difference in the final total energy. Consequently, the l s - L E M A O - N G  parameters 
listed in Table 1 are used in ls z 1S Li +, ls=2s 2S Li, 1sZ2p 2p Li, as well as in 
ls 2 2s 2 1S L i - .  

3.  A I M  C a l c u l a t i o n s  on  L i~  and Li  2 

A) General 

The following correlation of lower states of Li+, Li, and Li -  with states of 
Li 2 and Li~ can be obtained: 

ls 22S Li + ls 2 2s Li --+ *Z + + 3Z+ Li2, (8) 

ls 22s Li + ls 2 2p Li --+ *Z + + 3Z+ + 1 Hg + 3 H ,  Lie,  (9) 

ls 2 Li + + 1s22s 2 L i -  -+ lz~; -[- 127: Li2 ,  (10) 

2 + Li + (11) ls2 Li+ + ls22s Li--+ 2Z+ + Z,, 

ls 2 Li + + ls22p Li--+ 2Z+ + 2Z+ + 2/79+ 2/7, Li +" (12) 

The total energies (relative to a state of all electrons and nuclei infinitely separated), 
in h.u., of the reactants are - 14.956, - 14.888, - 14.785, - 14.758, and - 14.690 
for reactions (8)-(12), respectively. Actually, there are a number of separated 
a tom states, 1s22s Li + ls 2 nl Li, n = 3 and 4, the energies of which lie between 
levels (9) and (10); i.e., between - 14.888 h.u. and - 14.785 h.u. If we were interested, 

1 + for example, in the second excited Sg state of Li 2 (i.e., the third lowest energy IZ+ 
state), then at least some of these omitted separated-atom states would be extremely 
important.  In the present study of the lowest two singlet states, it is asserted that 
the ionic interaction (10) should be included at the expense of these lower energy 
neutral a tom interactions. 

Corresponding to a given component  of any molecular state shown on the 
right of Eqs. (8)-(12), an AIM basis function may be written as a known linear 
combination of antisymmetrized products of atomic substate functions from the 
left of Eqs.(8)-(12). For  example, the AIM basis function corresponding to 
1S+ Li 2 in Eq. (9) can be written as follows: 

01 = 7"1 - 7"2 (13) 
where 

7"1 = 2 3 .  7"2 n B = - q~4 ~1 ) , (14) 

here, 4~ x to ~x  represent Li a tom eigenfunctions corresponding to lowest energy 
states 2S (M s = 0.5), 2S (M s = -0 .5) ,  2p (Mr. = 0, Ms = 0.5), and 2p (ML = 0, 
Ms = -0.5) ,  respectively (z-axes on the two atoms A and B are taken to lie along 
the internuclear axis, and both have the same positive directions). Electrons 1-3 
are initially assigned to the ~ff eigenfunction and electrons 4 - 6  to the ~ eigen- 
functions; a '  is a partial antisymmetrization operator  which causes 7' 1 and 7'2 to 
obey the Pauli principle. 

1 + Calculations on 2 0 Li2 were done with: (1) the one function from Eq. (8); 
(2) the resonance of two functions from Eqs. (8)-(9); and (3) the resonance of three 
functions from Eqs. (8)-(10). Calculations on 227 + and 2X, + Li + were done with: 
(1) the one function from Eq. (11); and (2) the resonance of two functions from 
Eqs. (11)-(12). 
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B) Results 

In all cases, we carried out AIM calculations using Gaussian expansions of 
appropriately scaled Slater-type orbitals (i.e., l s -STO-NG, 2s-STO-NG, and 
2p-STO-NGL) [19, 20] in addition to our own newly developed LEMAO-NGL's.  
AIM predicted energies for 2Z; Lif ,  R = 6.0 a.u., and t12~- Liz, R = 5.05 a.u., are 
listed in Table 8. 

Table  8. A I M  ground state energies (h.u.) for Li~- and Li z using ls ,  2s, a n d  2p Gaussian expansions 
of lengths (N, M ,  L)  

N M L L i ~  (R = 6 a.u.) L i  a (R = 5.05 a.u.) 

S T O  L E M A O  S T O  L E M A O  

One-structure calculations 

2 3 

3 3 -- 14.774 

3 4 -- 14.774 

4 3 - 14.773 

4 4 - 14.773 

5 3 - 14.772 

Two-structure calculations 

2 3 2 

2 3 3 

3 3 2 

3 3 3 - 1 4 . 7 9 6  

3 3 4 - 1 4 . 7 9 6  

4 3 3 - 14.795 

4 4 3 - 14.795 

Three-structure calculations 

2 3 2 

3 3 2 

Expt~ 1 -- 14.803" 

- 14.776 - 14,976 

- 14.773 - 14.987 - 14,973 

- 14.774 - 1 4 . 9 8 6  - 14.972 

- 14.986 

- 14.986 

- 14.798 - 14.985 

- 14.799 - 14.985 

- 14.795 - 14.980 

- 14.796 - 1 5 . 0 2 1  - 14.980 

- 15.020 

- 14.994 

- 14.993 

- 14.989 

a Based upon  estimated D e = 1.24 eV. 

Results for a given number of structures should converge toward an exact 
theoretical AIM limit as the Gaussian expansion lengths (N, M, L denote lengths 
of the ls, 2s and 2p expansions, respectively) are increased; it appears that 
(N, M, L) = (3, 3, 2) is nearly sufficient to give results within 0.001-0.002 h.u. from 
this limit. As the number of structures is increased, we expect the exact theoretical 
AIM limit to approach experiment. 

Initial investigations made use of STO-NGL expansions. Results for the two- 
structure calculation on ground state Li2 at R = 5.05 were below experiment; 
this was consistent with our previous experience with the STO-basis as described 
in Sect. 1 above. It was for this reason, of course, that we began developing the 
LEMAO-NGL expansions. In Table 8, we see that AIM energies using these new 
functions are not depressed below experimental. The three-structure Li2 energy 
appears to be about 0.005 h.u. above the experimental result. For Li~-, our corn- 
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Table 9. AIM energies (h.u.) and projection numbers for Li~- using LEMAO-(3, 3, 3) 

R 22;+ 22:: 

W 1 W 2 -- EAI M -- Epp a Wl W 2 -- EA1M -- Eep a 

4 0.650 0.350 14.757 0.201 0.799 14.617 
5 0.661 0.339 14.786 14.799 0.515 0.485 14.657 14.670 
5.7 0.680 0.320 14.794 0.702 0.298 14.678 
6 0.688 0.312 14.796 14.803 0.768 0.232 14.685 14,696 
7 0.714 0.286 14.796 14.799 0.934 0.066 14.706 14.716 
8 0.738 0.262 14.791 1.015 -0.015 14.723 
In[  1.000 0.000 14.758 14.758 1.000 0.000 14.758 14.758 

a We have added the experimental energy of 2Li + to the valence-electron energies for Li + calculated 
by a pseudopotential model in Ref. [21]. 

puted two-structure energy appears 0.007 h.u. above the estimated experimental 
value. 

The present scaled atoms-in-molecules (SAIM) theory provides for scaling 
of each individual many-electron atom in a molecule [6]; such scaling does not 
discriminate between inner- and outer-shell electrons. Most of the electronic 
energy of a molecule is inner-shell energy, and this is primarily affected by the 
scaling process. On the other hand, the interatomic binding energy in a molecule 
is largely outer-shell energy, and this is affected least by scaling. Therefore, the 
scaling feature of present SAIM theory is most important only for molecules 
containing one- and two-electron atoms, for which inner-shell-outer-shell dis- 
crimination is usually not significant. We are presently working upon an extension 
of the SAIM model which will allow for this discrimination; that is, it will permit 
scaling of valence electrons independently of inner-shell electrons. It is our opinion 
that the gap between present AIM results and experiment, for Li] and Li2, may 
be nearly closed in an extended SAIM model which allows for such valence- 
electron scaling. 

In Table 9, we list AIM results for 2220 + and 222,+ Lif  as a function of R. We 
include, for comparison, energies computed by Bardsley using the pseudopotential 
model [21]; his values should be very close to experimental. A Rydberg series of 
three Lia states leads to predicted ionization potential of 4.99 eV [22], which 
gives De(Li~)~-1.45 eV, or E = -14.811 h.u. relative to all electrons and nuclei 
infinitely separated. Most theoretical calculations indicate De(Li~-)-~l.24eV 
[23-26], E = - 14.803 h.u. The ground state potential energy curve is very broad 
and quite shallow. 

Given a wave function 

~o = Z C ~  (15) 
i 

like Eq. (13), the projection numbers 

Wi = Ci 2 Cj ~ ~i VjdI) (16) 
J 

may be defined. For Li~-, wl and w2 correspond to structures derived from sepa- 
rated atom states indicated in Eqs. (11) and (12), respectively. We see that ground 
state Li~ contains a significant fraction of the structure ls~ls~(2pzA+2pzB); 
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Table 10. Compar ison of Li~- results 
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Method R - E R - Ein f Ein f - E R Req 
a.u. h.u, h.u. h.u. eV a.u. 

ls~, lSg(2SA + 2SB) 5.6 14.6517 14.6405 0.0112 0.30 5.96 
LCAO-MO-SCF  6.5 14.6692 14.6405 0.0287 0.78 6.5 
ls~, lsE(rpA + (PB) 5.6 14.6874 14.6418 0.0456 1.24 5.96 
SCF 6.0 14.7139 14.6691 0.0448 1.22 5.7 
AIM-1 a 6.0 14.772 14.758 0.014 0.38 ~6.5 
AIM-2 6.0 14.795 14.758 0.037 1.01 ~ 6.5 
Pseudopot. 6.0 14.803 14.758 0.045 1.23 5.9 

a AIM-n = Atoms-inMolecules calculation including n structures. 

that is, the Li + ion induces considerable polarization in the oncoming Li atom 4. 
In Table 10, results for ground state Li~ are compared with those of other 

calculations. The first and third lines refer to work done by James [23]; the 
LCAO-MO-SCF calculation was done by Fraga and Ransil [24] using the AO 
basis (lSLi, 2SLi, 2pLi) with optimized orbital exponents; the SCF result is by 
Fischer and Kemmy using a basis of Gaussian orbitals [251 ; and, the pseudo- 
potential result is by Bardsley [21]. 

1 + In Table 11, we list AIM results for the ground and first excited 2; 0 states of 
Li 2 as a function of R. Experimental results are taken from a tabulation in Ref. [31]. 
We see that results based upon the less accurate LEMAO-(2, 3, 2) expansions are 
depressed below results based upon the more accurate LEMAO-(3, 3, 2) expan- 
sions by 0.001, 0.004, and 0.006 h.u. at R = 7.0, 5.05 and 3 a.u., respectively. At 
R = 4.0 a.u., one finds E 1 --- - 14.982 h.u. using LEMAO-(3, 3, 2), by interpolation; 
experimental is E = - 14.981 h.u. Thus results for R __< 4.0 a.u. are depressed below 
experiment; longer Gaussian expansions would be required to obtain exact AIM 
results which, in theory, would provide upper bounds to experiment. 

Finally, results for ground state Li 2 are compared in Table 12 with results of 
other calculations. The first line refers to an LCAO-MO-SCF calculation by 
Ransil [32] using the AO basis (lSLI, 2SLi, 2pLi) with optimized orbital exponents. 
The next two lines refer to calculations performed by James [33]. The SCF and 
ODC ("optimized double configuration") are given by Das and Wahl [34] and 
the 7-CI (seven configuration calculation using optimized orbitals) is by Das 
[31]. The most recent experimental value is by Velasco and coworkers [35]. 

4 In the first approximation,  Pauling long ago argued that the one-electron homopolar  bond 
energy should be about one-half of the two-electron bond energy. However, an additional contribution 
would be derived from polarization of the a tom in the ion field [21]. For H~, the first part is said to 
account for (4.74 eV)/2 = 2.37 eV of the observed 2.78 eV bond energy, and polarization is said to 
account for most  of the remaining 0.41 eV. The s - p separation energies in H and Li are 10.2 eV and 
1.85 eV, respectively. Hence, induced polarization should be more important  in Li~ than in H~. A 
number  of years ago, a theoretical approximate predecessor of SAIM theory, called modified atoms-in- 
molecules theory [28, 29], was used to calculate the potential energy curve for Li2 + using but  one 
structure, that one derived from Eq. (11), The result De(Li~- ) = 0.65 eV, which is about  one-half of 
D,(Li2) = 1.03 eV, was considered reasonable (by FOE) at that time for the one-electron bond. The 
reason was wrong; there is an additional contribution of about 0.6 eV due to ion-atom polarization. 
Incidentally, the subsequent Diatomics-in-Molecules energy predictions for Li~ and Lia H+ were too 
high because of the incorrect Li + potential used in those calculations [29, 30]. 
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Table 11. AIM ground state energies E i (h.u.), ground state projection numbers wl, and excited iN] 
state energies E 2 for Li 2" 

R - E~x p - E 1 wl w 2 w 3 - E 2 

2.5 
3.0 

3.5 
4.0 
4.5 
5.05 

5.5 
6.0 
7.0 

8.0 

14.914 0.051 0.387 0.562 
14.954 0.182 0.330 0.489 14.778 

(14.948) (0.120) (0.354) (0.525) (14.790) 
14.976 0.301 0.280 0.419 

14.981 14.987 0.402 0.240 0.358 
14.992 0.483 0.208 0.309 

14.994 14.993 0.552 0.179 0.269 14.868 
(14.989) (0.542) (0.175) (0.283) (14.871) 

14.993 14.990 0.597 0.157 0.247 
14.989 14.987 0.637 0.133 0.231 
14.979 14.977 0.707 0.084 0.209 14.894 

(14.976) (0.719) (0.081) (0.199) (14.895) 
14.971 14.969 0.784 0.040 0.175 

a Results in parentheses calculated with the more accurate LEMAO-(3, 3, 2); all other 
with LEMAO-(2, 3, 2). 

Table 12. Comparison of Li 2 results 

results calculated 

Method R - E R - Ein f El, f - ER Req 
a.u. h.u. h.u. h.u. eV a.u. 

ls~ls2(2sa2sB) 5.05 14.845 2(7.4179) 0.009 0.24 ~6.0  
L C A O - M O - S C F  5.34 14.8422 2(7.4179) 0.006 0.17 5.34 
ls~, ls~(q~Aq~B) 5.63 14.866 2(7.4192) 0.028 0.76 
SCF 5.07 14.8716 2(7.4327) 0.006 0.16 5.26 
O D C  5.0 14.8796 2(7.4327) 0.014 0.38 5.43 
7-CI 5.07 14.9026 2(7.4327) 0.037 1.01 5.09 
AIM-1" 5.05 14.972 2(7.4779) 0.016 0.43 ~ 5.2 
AIM-2 5.05 14.980 2(7.4779) 0.024 0.65 ~ 5.2 
AIM-3 5.05 14.989 2(7.4779) 0.033 0.90 ~5.0  
Pseudopot. 5.0 14.989 2(7.4779) 0.033 0.90 ~5.0  
Expt'.l 5.05 14.994 2(7.4779) 0.038 1.03 5.05 

a AIM,n  = Atoms-in-Molecules calculation including n structures. 

4. Conclusions 

There are two important characteristics of Atoms-in-Molecules (AIM) theory 
which make it an especially attractive model in quantum chemistry. First, the 
basis set need not be as large as in an ab initio calculation of comparable accuracy; 
much of the configuration interaction required in the latter is accounted for by 
exact determination of intra-atomic energy in AIM theory. Second, the AIM 
method is conceptually satisfying since explanation of molecular properties is 
couched directly in terms of interacting exact atomic eigenfunctions. 

In AIM theory, interatomic contributions to matrix elements are calculated 
with approximate many-electron atomic eigenfunctions. We have shown in this 
paper that if these approximate eigenfunctions are built from Gaussian lobe 
functions, parameters of which are chosen by individually minimizing the given 
atomic substate expectation energies, practical AIM results can be achieved. For 
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Li~- and Li2, convergence to exact theoretical AIM limits within about 0.001 h.u., 
is achieved by using three-term expansions for R>4a .u . ;  longer expansions 
would be required for smaller internuclear distances. 
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